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ABSTRACT 

The phase structure of a large N, O(N) supersymmetric model in three 

dimensions is studied. Of special interest is the spontaneous breaking of 

scale invariance which OCCUTS at a fixed value of the coupling constant 

x0 = A, = 4x. In this phase the bosons and fermions acquire a mass while 

a goldstone boson (dilaton) and goLdstone fermion (“dilatino”) are 

dynamically generated as massless bound states. The absence of renormali- 

zation of the dimensionless coupling, constant ho leaves these goldstone 

2 particles massless. 
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INTRODUCTION 

Dynamical.generation of mass scales is a long standing problem in quantum 

field,theory. The interest in this issue has been enhanced by the attempt 

to understand the very different orders of magnitude of mass scales that 

appear in particle physics. Hope to unveil this mystery came from super- 

symmetry; consequently, one of the most interesting issues in super- 

symmetric theories is their ultraviolet behavior and phase structure. 

Though in general we lack exact solutions, much of the theory's secrets 

are often revealed in simple models and useful approxim~ations. Such a 

nonperturbative and systematic approach, is provided by the large N expan- 

sion in quantum field theory where, in many cases, the leading order 

exhibits the true dynamical effects of the theory. Indeed, in a realistic 

theory the leading order in l/N exhibits some of the known dominant 

phenomenological features; (i.e. Zweig's rule and Regge phenomenology 

represented in the planar diagrams in QCD). The large N expansion is 

employed in the present paper in order to study an O(N) symmetric, 

supersymmetric theory, where the leading l/N structure is exactly 

calculable. 

A new phase structure for the l&gem theory in three 

dimensions has been recently found.' At the tricritical point, where all 

renormalized dimensional parameters vanish (J+&& and X(p]'), the theory 

is determined by a renormalizable scale invariant lagrangian. At large N 

the theory has a nontrivial ultraviolet fixed point associated with a 

dynamical mass, generated for the $ particles through dimensional 

transmutation. Scale invariance is thus, spontaneously broken, and a 
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goldstone boson of broken scale invariance appears as a 6-F bound 

state. This goldstone boson, the dilaton , is massless in leading l/N 

since no perturbative renormalization of the coupling 
7 

exists at this 

order, and, therefore, no explicit breaking of scale invariance exists. 

The large N leading perturbative 
r, 

function of the theory is identically 

2 zero (next order in (l/N) has been calcuIated ) whereas a nonperturbative 

leading O(1) contribution to the 
r 

function possesses the ultraviolet 

fixed point mentioned above.3 

In the present paper we establish an interesting new phase structure 

for a supersymmetric theory in three dimensions, which is reminiscent 

of the one found for the 
7' 

[pjJ theory. At large N we find spontaneous 

breaking of scale invariance and a dynamical mass generated for the 

scalars and fermions in the supersymmetric ground state and thus the 

formation of the goldstone mode. The dilaton and the "dilatino" appear 

as massless bound states in the scalar-scalar and scalar-fermi& scattering 

amplitudes, respectively. 

In Sec. 2' we present our variational calculation following the 

method used in Ref. 4 (where it was employed to show that large N A($;']' 

in four dimensions is unstable). The new ingredient here is the fermion 

contribution to the Hartree-Fock ground state energy. The variational wave 

functional is the direct product of scalar and fermion components. This 

calculation gives the exact answer at N-w. In Sec. 3 we find the gap 

equations that determine the scalar and fermion masses. The phase structure 

is then revealed and summarized in Figs 2 and 3. Scale invariance is 

spontaneously broken at 
rL= 

0, if the coupling constant j,, takes exactly 

the value J,, = 4~. In Sec. 4 we calculate in leading l/N the scattering 

amplitudes and find the expected dilaton and "dilatino" poles in the 

r== 0, 1, = 46 goldstone phase. Sec. 5 sunmarizes our conclusions. 
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II. VARIATIONAL METHODS 

We will discuss a model in three space time dimensions given by the 

action 

s=: J d3x die z&-x> 01 

where 

;i: isan N component superfield 

x, e1 -t 6 $L, i+&&) 

d (x, ej = t j+D;3; i- &F (iv+-) 0 

(2.1) 

(2.2) 

(2.3) 

T(x),q(x), and T(x) are the real scalar, two component majorana and 

auxiliary fields, respectively. In Eq, 2.2, D is the super covariant 

2 derivative D = ~~ - i'2(e with 6 a two component majorana anticommuting 

variable. Written in terms of component fields, the action is 

5 = {Cl38 [ 4 (/a/F)’ + 4 FifF i & j?’ 

*k (r&F - $.q) 

+~[2~y~ng.~-~.~) -4&&[&&j ] 

Integrating out the F(x) component auxiliary field 

b-p+ $qj-,g = 0 

(2.4) 

(2.5) 

gives finally the lagrangian 
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L (x, = t tkSriTl' -rLZ'? + f F(i*r,,T 

- y(g’)’ - d&L)’ (2.6) 

dq-~“(&(p) i qj&~,(g+)] 
2N 

In the large N limit we hold J, 
0' r*o. 

fixed as N-e,' Standard 

technique of summing the infinite number of cactus diagrams use Euclidean 

functional integrals5 or Hamiltonian methods 4,6 , Below, we use the 

variational method of Refs. 4 and find the best plane wave ground state 

which is represented by the wave functional 

Y(A)?) = wa Yrv’1 (2.7) 

yi flj = e%p { -l&x “j ~~~,-iT.1G~~-~)(a,,-‘~~)) (2.8a) 

Yrw = ‘Xf [ -(dQ “‘a (2.8b) 

G and A 
mY 

are the boson and fermion correlation functions. The back- 
mfl 

ground field ^', as well as the boson and fermion masses in the correlation 

functions will be determined by minimizin, 0 the Bartree-Fock ground state 

energy. It has been shown in Refs. 4 that this approach is equivalent to 

an effective potential calculation as long as the gap equation is satisfied. 

End point solutions for global minimum of the ground state energy are obvious 

in this variational calculation, but missed altogether in the effective 

potential approach.7 In the present analysis > gap equation 

solutions will play the main role and thus our results can be rcderived also 

in a standard large N effective potential calculation, 
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The Hartree-Fock ground state energy, to leading~order in N, 

is given by the sum of kinetic and potential energies and 

h&q&,, <I = khlyn,,iq) +K,(r~q + <vciqqj> ~(2,g) 
can be calculated using a trial plane wave expansion4 of the quantum 

operators x(x) and 'v'(x) or equivalently through a Euclidean path 

integral. one finds for the boson kinetic energy, 

and for the fermion kinetic term, we use the relation 

I 
- d’* 

aY e I JL E (k) -[k,+.m3 + $Y<G (v’, ] v f 
=-Cd 

where 
‘f =~~($f+~~$~ and find 

E 

“, I& = 
(aMY 

-2 $@.;> 
Y 

(2.10) 

(2.11) 

(2.12) 

he distinguish between the normal ordered masses mA and m 
v 

of the boson 

and fermion fields and will let the minimalization procedure to choose a 

supersymmetric or non-supersymmetric ground state. 

The vacuum expectation value of an O(N) singlet quantum operator at 

large N satisfiesg < Qfw> = < Qp; t O# and thus the potential 

energy from Eqs. 2.6 and 2.9 is given to leading order in N by 

< h~,-,>o = &ii’> +- k<g.3;> -+ A~~<~+- 

ts<& + 52. <jy)< g. v’> 
(2.13) 
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The ground state energy in Eq. 2.9 is determined in leading order in N 

-2 by the quantum fluctuation of A and y.7 , namely 

<jy’> q.js\:” *AJ I g? c Pj !J 
(2.14a) 

=EJq- * & [AA - gM,l] 
and 

<FF> ‘s /J ($ ( ,;;$y ) 
‘I 

(2.14bl 

=-M %& - cjh,]) 

% 
and A 

+ 
ax-e ultraviolet cutoffs which we will take now to be equal in 

order not to introduce an explicit breaking of supersymmetry. 

From Eqs. ,(2.10), (2.12), and (2,14a,b) one finds (lqe take mA>O ) 

Jv% 1 = $--h,: 
and 

k+ twy) = ;z A nM; - 2 ptiy13 

(2.15al 

(2 .lSb) 

The Martree-Fock ground state energy in Eq, 2.9 is new given by 
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AM; 
$Akv$,WV,~~,h) = G% - * i- I& I3 nM> 

24 ‘T 

-t r( ; j?y + & - $) .t k (,- $%tQ t +-;YJJ ) 

4 r.p( r:+ A&- !gi g (q+ &- 2 )’ 

3 $ (q + n z’rl~ - %)(.-A$i 5- /w,,Izk+~ ) 
' 2rr 

The only renormalization required in the leading order in N is 

‘h = 1, 

After some rearrangement of Eq. 2.16, one finds 

= $(@-I: - /hFIsj 

(2.161 

(2.17) 

(2;18)~ 

-I- (PQr -fv4 ,+Mcy-px (Tp f;;)]” 
FIe notice that the renormalized u is not cutoff inde- 

pendent for arbitrary values of the variational parameters ,l'i3~~%$~~+ 

Mowever, age have not yet applied the~minimalization procedure to choose the 

best plane wave gound state. 
4 This will be carried out in the.next section. 
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III. GAP EQUATION AND PHASE STRUCTURE 

At its minimum, the Hartree-Fock ground state energy satisfies the 

extremum conditions ~~W/'&M~=LI and /a W/a%%,= 0 . The first 

relation implies 

aid 
5&g,= O + ($ -irv$)bvq+-x (py$l))=o (3.1) 

which is the gap equation for the fermion mass (Fig. la). Since the cutoff 

dependent term in Eq. 2.18 is proportional to the fermion gap equation [we 

neglect the uninteresting m - O(A) * solution in Eq. 3.11, we see that if 

W,= r-l+' 'c- 2, then 1J(++,,h,,'rl A) is now cutoff in- 

dependent. Namely, if one inserts now the fermion gap equation solution 

into Eq. 2.lS, one finds the vacuum energy, 

(3.2) 

The boson gap equation (Fig. lb) 

caw 
“-%-4= o - .&In1 -i- x (+A*- b+$q 

(3.3) 

-XI”” UK:- Q,,lr/* 3A h~‘;‘-~;)‘))clsJ 20 

can be written now as 

cy!! i !&I) 4n- 
One notices that W in Eq. 3.2 can be written as 

Q= $ (I+~$-&y) + l#ri-(LM;.7j)y- 

(3.4) 

(3.5) 
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where R = Imyl/mA. Since both terms in Eq. 3.5 are never negative, the 

absolute minimum of the ground state energy can be found by separately 

minimizing each term. The first term is zero at its minimum value where R 

a 1. The vacuum energy becomes W = 4nrnt 22 which has two possible minima. 

For' lmllj = mA # 0 and i,' = 0, we have an O(N) symmetric, supersysmetric 

ground state. Alternately, if Irn$I = mA = 0 with 12 f 0, the O(N) symmetry 

is broken in the ground state. Both solutions imply Wmin = 0 because the 

supersymmetry always remains unbroken at the minimum. 

To study the vacuum structure we examine the gap equations. Since 

IrnqI = mA it is sufficient to study the fermion gap equation obtained from 

Eq. 3.1, 

22 

m211 = p + 'x (4 - Imy\/4’iu)~ (3.6) 

This simple relation, when combined with Eq. 3.5, reveals a very 

interesting phase structure. We normally would expect to find two possible 

phases, an O(N) symmetric phase for u>O and an O(N) broken symmetry phase 

for p<o. Indeed we ~find these two conventional solutions to the gap 

equation. 

q.h-70 : &=o ) w-y = p/ww > 0 

(3.7) 

b),No: m+=o, 5;: = -/d3\>0 

However, there exists a totally new class of solutions to the gap equation 

which produces an O(N) symmetric phase different from case (a) for certain 

ranges of the renormalized parameters. 

Cl) p,O , ‘xyY* t i&=0 ) gvp= -p /tljrpe,j<o 
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cd p = 0 , Yix=ct* : A‘= 0 , WVq arbitcaqq < 0 

(3.8) 

c3)p~o,‘x(Y~v: i&= Q ) my.=piw3\Iqlk\ c 0 

Note we have chosen X>O by convention. 

The different phases of the model are summarized in Fig. 2. In case 

(a), the O(N) symmetry is preserved and the fermion mass is positive (note 

that there is no trivial Y5 symmetry to change the sign of the fermion mass 

term for two component fermions in three dimensions). This is the expected 

symmetric phase for positive mass, u. In case (b), the O(N) symmetry is 

spontaneously broken and the bosons are massless goldstone particles. 

Supersymmetry implies that the fermionic partners to these bosons are also 

massless. This is the expected broken symmetry phase for negative mass, u. 

Case (c) is the new O(N) symmetric phase which exists for both signs of the 

mass parameter, u; but for a restricted range of couplings, A. The fermion 

mass is negative for this phase. 

An alternate description of the phase structure of the model is given 

in Figure 3. We show lines of “constant physics” as function of the 

renormalized parameters, p and 1. For the symmetric phases, (a) and (cl, 

the lines correspond to constant physical mass for the fermions and bosons. 

Note that the lines for phase (c) are all continuous through the point, (u 

= 0, A = 4~). For the broken symmetry phase, the line corresponds constant 

vacuum expectation value of the scalar.field, xc. In regions II and IV, the 

normal phases provide the unique ground state. However in regions I and 

III, the normal phases are degenerate with the new phase. At each point of 

region I, there are two possible ground states. both O(N) symmetric and 
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supersymmetric, but having different values for the particle masses. At 

each point of region III, an O(N) symmetric ground state is degenerate with 

states where the O(N) symmetry is spontaneously broken. The degeneracy is 

exact as the unbroken supersymmetry guarantees that the vacuum energy 

vanishes for all ground states. 

The point u = 0, is of particular interest. Since p is the only 

dimensional parameter in the theory, the lagrangian is scale invariant if u 

= 0. (We consider, as above, the theory at &Van 
Q 

= 0, namely the fermion 

gap equation is satisfied, and thus the Hartree-Fock ground state energy W 

has no cutoff dependence). At leading N, the coupling constant h is not 

renormalized. The gap equation (Eq. 3.6) has now the trivial solution m 
IL= 

0, ‘Ac = 0 that give W = 0. This is the case where we are exactly at the 

critical point of the theory and is analogous to the m = 0 solution at the 

tricritical point in Refs. 1,2. 

There is, however, another possibility if the coupling constant X 

takes exactly the value A = 477. In this case, m+<O can take any value 

(while 1: = 0). This gives a supersymetric (Irn+l = m,), O(N) symmetric 

phase in which by dimensional transmutation, the coupling A is traded for a 

dynamically generated mass. Scale invariance of the original lagrangian is 

spontaneously broken due to the appearance of IDI,,,! = mA f 0. Note that all 

lines of phase (c) pass through the point, (u = 0, A = 4~). In the next 

section, we discuss the appearance of a goldstone boson (dilaton) and a 

goldstone fermion (“dilatino”) associated with this phase. 
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IV. THE DILATON AND DILATINO POLES 

As found at the end of Section III, the theory with 0 has, in 

12 addition to the m = Ac = 0 critical point minimum, also a massive phase 

in which scale invariance is spontaneously broken. Since this ground state 

is supersymmetric, the goldstone boson associated with the spontaneous 

breaking, the dilaton, is accompanied by its supersymmetric partner, a 

goldstone fermion, we call a%ilatino! 

The dilatino p2 = 0 pole should be fetid in the fermion-boson 

scattering amplitude. Indeed, the leading order in X (Fig. 4) gives as 

seen from Eq. 2.6 

‘Tfi v$ F” = 2 
.B 

k{ i ,- r~ I$$ ($y~~ j( k+;w j j’ 
Y I; 

= “i 11 - k (Ad $*;,a 
v nl 

lk.j-~*l~ 

2 In the supersymmetric ground state )m+.I = mA we have as p -+ 0 

-I-- +tfL) LZ${ IQ. Y x lb.1 - $-& pi- . > ,j’ (4.2) 
ri , b*J. 1 

and thus usi~ng Eq. 3.7, we find in the m 
do 

solution of the 
r 

= 0 

case, the dilatino pole (note that WC use Euclidean metric) 

--I-- IfDrr j&,j ‘yn qfi(pLJ = - - 
N 7 

(4.3) 
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The dilaton pole can be found, as in Ref.1, in the AA channel and 

here also in the q+ channel. Fig. 5 gives the following relations for 

the scattering amplitudes 

-7 = 4x f %P-q, + 
it 

F-T, (4.4a) 

(4.4b) T =4 -+ B-i-,, %I d if 

-qL = 4 
;f 

*x~~T;, + 
J 

F XL (4.4c) 

(4.4d) 

where we denote by an index 1 and 2 an Ar\ state and a qf state, respectively. 

x and y are the couplings 

x= 2 Q.?+ 3 1’ 
Al . )-ji ($3 

2 
x = - _ Lhl 

B and F arc the boson and fernrion bubble diagrams given by 

I3 = -; J3r 2 ps < i-q,, x;&, $ I 
= -2N I d’k I , & pGG3 _I d-t k’+h; @+!c,= &A; I -__- = -4”, ~“-“‘p\h;]k 

(4.5a) 

(4.5b) 

(4.6) 



- 14 - 

and 

= -rti zk[lt* p) - 2 ‘kb 

3 

(4.7) 

(bl-4;) ( (pi kj”i fh,L) 

= -zti p!g-1- i &r (++I”;’ IJ~~~i,~<;rL+p+“j 

From Eqs. 4.4 a-d, one finds 

-I--&,~ -q-, = 4h += J I - >6- 2 “BF 

-I& T, = 4% 
= -7, = 7-I (4.8bj 

f-v%- L&= 
2 

Y*, Al- 

-r-r w.Ty”-L = 4m [-xB 
-2 

L3F 

All these scattering amplitudes have the common denominator 

(4.k) 

‘-XB-,%F = 1 - (2 ‘$/k 3 sL <AL>)& +z)‘~~ (4.9) 

which vanish at p2 = 0 in the spontaneously broken scale invariant phase 

(/I= 0). Tl' 11s can be seen from Eqs. 4.6 and 4.7 as p"- 0 

EqJ’) 3-- 
4ri ho A -L (f- ;‘, li) 

(4.10a) 
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F(p - - y ( k - lb,/ - i & ) 

and using Eq. 2.14a we find 

(4.10b) 

which as expected exhibits the dilaton pole at p* = 0 -if )\ = 4~. 
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V. SUXMARY 

Using a Ilartree-Fock variational calculation, we studied the phase 

structure of an O(N) supersymmetric model in three dimensions. This 

variational calculation gives.the exact answer in the limit N- 0~ . 

Figures 2 and 3 summarize our main findings. The ground state of'this 

model at large N was found to be always supersymmetric, whereas the 

O(N) internal symmetry can be broken (phase b ) or unbroken (phases a 

and c). depending on the values of f‘ and X , the only parameters 

of the renormalized theory. 

Of special interest is the phase denoted by c (in Figs. 2 and 3). 

In this phase when the renormalized mass parameter 
r 

is zero jthe 

lagrangian represents a scale invariant theory (,j is~ dimensionless in 

d = 3). Dimensional transmutation takes place if X z 4j7 and a mass 

Jm,f = mA 
-5 

is generated for the O(N) bosons (4) and fermions (F). 

Scale invariance is spontaneously broken at thisvalue of J, and a massless 

goldstone boson (dilaton) and goldstone fermion ("dilatino" ) appear in the 

scattering amplitudes of Figures 4 and 5 as q-0' , ;r"-y and FF 

bound states. Normally these goldstone particles acquire mass due to 

explicit breaking of scale invariance brought in by renormalization. Here, 

however, since j, is not renormalizcd the dilaton and "dilatino" 

are exactly massless. This result is reminiscent of what was found l in 

I w in three dimensions where at the tricritical point, an ultra- 

violet fixed point in the 
P 

function at 7 '7 = (f+rr)L' stabilized 
c 
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the ground state while scale invariance was spontaneously broken. 1% 

are unaware of other models where the goldstone particle of broken scale 

invariance stays massless. The implications of this on realistic models 

need futher study, 

ACKNOII'LEDGENENT 

M.M. was supported in part by the fund for promotion of research and the VpR 

Fund at the Technion. 



- 18 - 

REFERENCES 

1. W.A. Bardeen, M. Moshe and M. Bander, Phys. Rev. Lett. 52 1188 (1984). -- 

2. Large N 
7 

($2)3 in three dimensions has been studied by: 

R.D. Pisarski, Phys. Rev. Lett. 48, 574 (19X?), T. Appelquist and 

U. Heini, Phys. Rev. DE, 2169 (1981) and 5, 2620 (1982), P.K. 

Townsend, Phys. Rev. Dg, 2269 (1975) DE, 1715 (1976) and 

Nucl. Phys. 8118, 199 (1977). - 

3. The phase structure established in Ref. 1 disagrees with that of 

Ref. 2. 

4. W.A. Bardecn and M. Iloshe, Phys. Rev. Dz, 1372 (19S3). 

5. S. Coleman in Pointlike Structure Inside and Outside Hadrons, Proceedings 

of the International School of Subnuclear Physics, Erice, 1979, edited 

by A. Zichichi (Plenum, New York, 1982),'p. 11. 

6. R. Jackiw and A. Strominger, Phys. Lett. 99B, 133 (1981). 

7. S. Coleman, R. Jackiw and H.D. Politzer, Phys. Rev. Dg, 2491 (1974); 

L.F. Abbott, J.S. Kang and H.J. Schnitzer, Phys. Rev. Dg, 2212 (1976). 

8. See for example L. Yaffe, Rev. of Mod. Phys. 2, 407 (1982). 



- 19 - 

FIGURE CAPTIONS 

Fig. 1: (a) Fermion mass gap equation (b) Boson mass gap equation. 

(Dashed line denotes the fermion propagator; solid line denotes 

the boson propagator). 

Fig. 2: Phase structure of the theory. y Plot 1mJ = lmAl as a function 

of p for fixed coupling 00. Cases (a) and (c) are O(N) symmetric 

while case (b) has the O(N) symmetry spontaneously brqken. we 

also plot the vacuum value of the scalar field for the three 

phases. 

Fig. 3: The different phases of Figure 2. We plot lines of "constant 

physics." For the conventional O(N) symmetric phase (a), the line 

is for constant particle mass m J, = Im*l* For the conventional O(N) 

broken symmetry phase, the line is for constant Y~CULIXI value of 

the scalar field, 1 c. We also show the lines corresponding to the 

new O(N) symmetric phase (c) with m $ = -ImfJ : At p = 0. all the 

lines of phase (c) pass through the point A = 4n and scale 

invariance is dynamically broken. 

Fig. 4 Fermion-boson scattering amplitude in leading order in l/N. 

(Solid line - boson, dashed line - fermion). A massless 

"dilatino" is found in this channel if p2 = 0 and X = 4~. 

Fig. 5: Boson-boson and fermio&fermion scattering amplitude in which a 

massless dilation appears (if p2 = 0 and A = 4~). 
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Figure 2 
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Figure 3 
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